Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features
نویسندگان
چکیده
UNLABELLED BACKGROUND Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. METHODS Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by DNA synthesis and matrix metalloproteinase activity assays. Moreover, epithelial cells were exposed to supernatants from cultured peripheral blood mononuclear cells, obtained from healthy donors or atopic asthmatic subjects and subsequently infected by rhinovirus and bFGF release was estimated. bFGF was also measured in respiratory secretions from atopic asthmatic patients before and during rhinovirus-induced asthma exacerbations. RESULTS Rhinovirus epithelial infection stimulated mRNA expression and release of bFGF, the latter being positively correlated with cell death under conditions promoting rhinovirus-induced cytotoxicity. Supernatants from infected cultures induced lung fibroblast proliferation, which was inhibited by anti-bFGF antibody, and demonstrated increased matrix metalloproteinase activity. Rhinovirus-mediated bFGF release was significantly higher in an in vitro simulation of atopic asthmatic environment and, importantly, during rhinovirus-associated asthma exacerbations. CONCLUSIONS Rhinovirus infection induces bFGF release by airway epithelium, and stimulates stroma cell proliferation contributing to airway remodeling in asthma. Repeated rhinovirus infections may promote asthma persistence, particularly in the context of atopy; prevention of such infections may influence the natural history of asthma.
منابع مشابه
Human rhinovirus infection of human bronchial epithelial cells results in migration of human bronchial fibroblast cells
Background Recent studies have demonstrated that structural changes in the airways characteristic of asthma, collectively referred to as airway remodeling, occur in young children even prior to the diagnosis of asthma. Young children who experience human rhinovirus (HRV)-associated wheezing illness within the first three years of life are at increased risk for the subsequent development of asth...
متن کاملEffect of Low–Level Helium-Neon Laser Irradiation on the Release of Interleukin 6 and Basic Fibroblast Growth Factor from Cultured Human Fibroblasts in High Glucose Medium
Purpose: Low level laser therapy is suggested as a new therapeutic method in diabetic wound healing. This survey aimed to evaluate the effects of low level laser on human fibroblasts cultured in high glucose cultures. Materials and Methods: The human skin fibroblasts were cultured under standard condition. The cells were cultured in high glucose culture medium (15mM/L) for a week and two weeks ...
متن کاملRole of rhinovirus infections in asthma.
Human rhinoviruses are not only the main pathogens responsible for the common cold, but are now recognized to have a major impact on asthma pathogenesis. There is evidence that rhinovirus infections play a role in asthma development, asthma exacerbations and, potentially, airway remodeling. Children who experience repeated rhinovirus-induced wheezing episodes in infancy have a significantly inc...
متن کاملBasic FGF mediates an immediate response of articular cartilage to mechanical injury.
The extracellularly regulated kinase (ERK), one of the three types of mitogen-activated kinases, was rapidly activated after cutting porcine articular cartilage either when maintained as explants or in situ. Cutting released a soluble ERK-activating factor from the cartilage, which was purified and identified by MS as basic fibroblast growth factor (bFGF). Experiments with neutralizing Abs to b...
متن کاملIL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17
BACKGROUND The pleiotrophic cytokine interleukin (IL)-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-alpha (TGFalpha) from human bronchial epithelial cells, with proliferation of these cells ...
متن کامل